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SUMMARY 

The energy dissipated by viscosity at the edge of a 
vibrating flat plate is calculated and compared to the 
radiated acoustic energy. A correction to the Kirchhoff 
integral estimate of the noise is derived. For Helmholtz 
number of order unity and smaller the dissipation can be 
comparable to or greater than the acoustic energy. 

A viscous compressible theory of the load distribution 
on a vibrating two-dimensional body is developed. First it 
is shown that load calculations based on potential theory 
and the Neumann uniqueness condition (continuity of potential 
or pressure on the surface) are not inagreement with 
experiment or the.more correct viscous theory. For a flat 
plate airfoil the eigensolution of potential theory is 
indeterminant while viscous theory yields a unique solution 
that has square root singularities at the edges. It is 
also shown that for compact surfaces the far field acoustics 
depend only on the magnitude of the eigensolutions of 
potential theory and so will be uniquely determined by the 
viscous theory. It is suggested that the general viscous 
theory of vibrating surfaces with cross-sectional geometry 
will lead to results in agreement with experimentally 
measured load distributions. 



NOMENCLATURE 

a 

a 
0 

A 

b 

C 

Co(t) ,c,w 

AdB 

Ea 

EV 

F 

F(t) 

GH'Gfi 

h 

h' 

Hh2)(z) 

z,r;,T; 

I 

k 

KO 

R ' (2) 

c*(l+T)/4 

speed of sound 

see Eq. (3.58) 

aJ(l-T)/(l+T) 

chord of two-dimensional vibrating body, 
see Fig. 2 

time dependent coefficients of eigensolutions 
of flat plate problem, see Eq. (3.28) 

see Eq. (2.28) 

energy radiated acoustically, see Eq. (2.23) 

viscous dissipation energy, see Eqs. (2.23) 
and (2.21) 

force on a vibrating flat plate, see Eq. (3.29) 

viscous correlation function, see Eq. (2.10) 
and Appendix A 

Greens functions for the viscous compressible 
problem, see Eqs. (3.64) and (3.65) 

acoustic correlation function, see Eq. (2.24) 
and Appendix B 

thickness of a vibrating elliptic body, 
see Fig. 2 

perturbation enthalpy 

Hankel function, see Ref. 4 

unit vectors along the X,Y,Z coordinate 
axes, see Fig. 1 

see Eq. (2.14) 

w/a 
modified Bessel function, see Ref. 4 

complex surface loading 
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LdB 
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;r 

P' 
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Isl 
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0 

S 

sf 

t 

3 

T,(X) 

U(s) ,W(s> 

V’ n 
V 

W 

w,(t) 

y(t) 
W 

-R-F 
X,Y 

see Eq. (3.58) 

moment on a vibrating flat plate, see Eq. (3.30) 

unit normal to S (or C with zero subscript) 

perturbation pressure, (= p,h') 

time average of quantity q 

absolute value of quantity q 

density of viscous dissipation energy, 
see Eq. (2.2) 

polar coordinates 

see Eqs. (3.36) and (3.37) 

far field spherical surface for calculating 
the flux of acoustic energy 

time 

unit vector tangent to C , see Fig. 2 

Chebyshev polynomial of the first kind, 
see Ref. 4 

Chebyshev polynomial of the second kind, 
see Ref. 4 

surface velocity components of a vibrating 
body, see Eqs. (3.61) and (3.62) 

perturbation normal velocity on Sf 

domain bounded by the vibrating surface 
and sf 
pe i.0 

vertical translation velocity 

amplitude of pitch vibration 

rate at which work is done on a fluid medium 
by a vibrating surface, Eq. (2.1) 

vector field points 
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x,y 

w 

31 w 

div 

grad 

Im 

Re 

V2 

('9 

g kY) 

x + iy 

see Eq. (3.46) 

Euler's constant, 2 0.57721 

Dirac delta function 

effective Helmholtz number, see Eq. (2.31) 

m 

kinematic viscosity 

density of fluid medium 

h/c 

velocity potential 

complex potential 

see Eq. (2.4) 

vibration frequency 

perturbation vorticity 

vector divergence operator 

vector gradient operator 

denotes imaginary part of a complex quantity 

denotes real part of a complex quantity 

Laplace operator 

conjugate of a complex quantity 
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I. INTRODUCTION 

The results reported in this document supplement those 
reported in Refs. 1 and 2. The overall objective is to 
incorporate viscous effects in the calculation of noise 
produced by a thin surface when it vibrates or interacts with 
an unsteady flow or an incident acoustic field. The results 
are of two types. First, we derive an explicit formula for 
the viscous dissipation at the edge of a vibrating three- 
dimensional surface with constant load and give an estimate 
for the excess noise that would be predicted with the 
Kirchhoff integral. The results are a direct extension of 
the two-dimensional results reported in Ref. 2. 

Second, we investigate the surface load problem in 
detail and its relevance to the acoustic problem. The 
importance of the Neumann boundary condition and its 
similarity to the Kutta condition as a uniqueness criterion 
is illuminated. The invalidation of the Neumann condition 
is demonstrated with the surface loads data measured by 
Brooks (Ref. 3). The correct viscous origin of the load 
is demonstrated for a vibrating flat plate. Finally, a 
detailed formulation of the viscous compressible 
surface loads problem for a surface of finite thickness is 
presented. 

II. VISCOUS DISSIPATION AND THE KIRCHHOFF CORRECTION 
FOR THREE-DIMENSIONAL SURFACES 

The following derivation is the three-dimensional 
counterpart of the two-dimensional results derived previously 
in Ref. 2. The end result is a simple formula for correcting 
the noise estimate that would be obtained with a Kirchhoff 
type integral. 

Consider a vibrating three-dimensional surface S in a 
stationary acoustic medium (see Fig. 1). From Ref. 1, Eq. 
(2.13), the time averaged rate at which work is done on the 
fluid medium by the vibrating surface is 

w= J F dz + / q dV (2.1) 

sf V 

where h' is the perturbation enthalpy and vn is the 
perturbation velocity on the far-field surface Sf . The 
first term is the energy radiated to the far field in the 
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Point P 

Figure 1 - Three-Dimensional Vibrating Surface 

form of sound. The volume integral is the energy converted 
irreversibly into vorticity by viscosity. We neglect 
compressible viscous effects so that the time averaged 
dissipation can be expressed in terms of the square of the 
vorticity, i.e., 

Cj=m (2.2) 

If J?(3) is the complex surface loading (force/unit area) 
then z1 can be expressed as follows: 

+1 w = E x grad Re($eiwt) (2.3 

where 



a 2 = iu 
u 

and w is the vibration frequency, p, 

(2.4) 

(2.5) 

is the density of the 
fluid medium and S denotes the vibrating surface (see 
Fig. 1). 

Substitute Eqs. (2.2), (2.3) and (2.4) into the second 
term of Eq. (2.1) to obtain the dissipation energy; i.e., 

EV = J Q dV 
V 

where 

v2 = a2 a2 --q + 3 ’ y’ = (Yl'Y2) 

(2.6) 

(2.7) 

(2.8) 

and the asterisk denotes complex conjugate. The volume 
integral is evaluated in Appendix A so that 
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where 

F(t) = e -t tsin t t > 0 

and 

(2.9) 

(2.10) 

(2.11) 

The viscous dissipation has thus been reduced to a 
double integral over the surface loading. The correlation 
between load points on the viscous length scale /m is 
the origin of the dissipation. Also, we will show that the 
principal contribution to the dissipation arises from the 
edge loading. 

i.e., 
Consider the special case of a constant load surface; 

R’ = R. = Constant (2.12) 

Then 

EV = - 
!+ 

87~~5 
*I (2.13) 

where 

I= f d$'j- d? v2F(Xly'-$'j) (2.14) 
S S 

The second integral can be reduced to a line integral around 
the contour C ; i.e., 
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(2.15) 

where the zero subscript denotes a quantity evaluated on 
c . Now interchange the surface and contour integrals and 
let J' =;o+Z. The result is 

I = $ ds J F'(xlzl) (-';;;, dz 
C S 

(2.16) 

For a >> 1 
F is of order 

the support of the viscous correlation function 
l/a so that the surface integral can be 

approximated as follows. Assume that the contour C is 
smooth and introduce polar coordinates at a typical point on 
the contour as shown in the inset in Fig. 1; i.e., 

Zi = (r cosf3, r sine) (2.17) 

Then 

I = 9 ds / rdr 'y de F'(hr)(-X case) 
C 0 n/2 

=2 $dsj hr F'(Ar)dr 
C 0 

=$$dsj t F'(t)dt 
C 0 

(2.18) 

9 



But 

so that 

co 03 

J t F'(t)dt = - J F(t)dt 

f 

e-t * 
= - FLn fro dt = 7r/4 

0 

I = - 
& ds=+ 

(2.19) 

(2.20) 

where C is the length of the contour C . Finally substitute 
Eq. (2.20) into Eq. (2.13) to obtain the dissipation, 

EV = 
R;=C 

16 &I 
Constant Load 

Surface (2.21) 

Note that the three-dimensional dissipation is independent 
of the viscosity coefficient as we found previously in the two- 
dimensional case. (See Eq. (40) of Ref. 2.) 

While Eq. (2.21) was derived rigorously for a constant load 
surface it is not difficult to generalize the result for a 
load distribution that varies slowly on the viscous length 
scale fiG7Z . The more general result is 

EV = Wo12 Slowly Varying 
Load (2.22) 

This result will now be used to derive a correction to the 
Kirchhoff integral estimate of the noise radiated by a 

10 



vibrating surface. From Appendix B, Eq. (B.30), the acoustic 
energy radiated by a vibrating surface is 

Ea = k2 
327T2p'a 

. J 
030 s 

where 

2lT 

G(;tr) = 
s 

0 

and 

r/2 

d@ s desin28cosee 
ikcos0 Gs*$ (2.24) 

-IT/2 

k = w/a 
0 

ii 
S 

= Lose + 5 sine (2.25) 

Note the similarity of Eqs. (2.9) and (2.23). The acoustic 
energy is a double integral over the surface load with a 
correlation function G on the length scale a0/w . The 
viscous dissipation is a double integral over the surface 
load with a correlation function 
LTGyw . 

V2F on the length scale 
For compact surfaces the two integrals are comparable 

in magnitude. To illustrate this important point we consider 
an acoustically compact surface in which case (see Appendix B) 

2 
Ea = (2.26) 

Consider the quantities 

Ea 
w (2.27) 

11 



and 

AdB = - 
Ea 

10 logl(j 7 (2.28) 

which is the dB increment by which the noise will be over- 
estimated by a Kirchhoff formula. Then 

Ea Ea Ea'EV 
- = Ea + EV = 1 + Ea/EV W 

(2.29) 

and 

Ea k2 -= 
24xpz= a, 

l (16pzk*ao) = K3 
EV 

(2.30) 

where 

K = k- 

Finally 

and 

J 
C 

2 1s 1 
Rod;; 

2 

S 
3iY 

P 
l~o12ds 

C 

Ea 3 
-=a W 

K3 
AdB = - lo log10 l+ 

1 
l/3 

- (2.31) 

(2.32) 

(2.33) 
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The Kirchhoff noise overestimate depends on the third power 
of the Helmholtz number based on a length scale defined by 
the square bracketed quantity in Eq. (2.31). For compact 
surfaces this scale only depends on the surface and edge 
loading and the geometry of the surface. It is clear from 
Eq. (2.31) that a fixed area surface with a very large 
perimeter will generate a smaller effective Helmholtz number 
and thus more dissipation than one with a minimum perimeter; 
e.g., a circular disc. Also it is evident that the Kirchhoff 
noise correction factor becomes small as the effective 
Helmholtz number exceeds unity. The correction is most 
important in the compact regime. The formula (2.31) can be 
used to correct Kirchhoff noise estimates for arbitrary 
compact surfaces and generalizations to moderately non-compact 
surfaces can be derived with the more general expression, 
Eq. (2.23), for the acoustic energy. 

It is not our objective here to derive a collection of 
specific formulae with the foregoing results. Rather, it is 
our intention to shed some light on the deeper question of 
how to calculate the surface and edge loading. In reality 
the edge loading must go to zero on some scale. However 
we have seen from the Brooks experiment, Ref. 3, that this 
scale must be very small. The edge load to be used in the 
preceding formula can be estimated from experiments like 
those of Brooks. However, this would be a costly endeavor 
if we must resort to experiment for every case and it 
becomes highly desirable to derive a theory that will enable 
us to calculate the edge load. An important conclusion based 
on the viscous and acoustic energy estimates in this report 
and Ref. 3, and the results of the Brooks experiment (Ref. 3) 
is that a correct load distribution theory must account for 
viscosity. That is the subject of the following section. 

III. THE SURFACE LOAD PROBLEM 

A. A Two-Dimensional Potential Problem 
and the Neumann Condition 

Consider the typical elliptic two-dimensional body that 
vibrates along the vertical or y-axis as shown in Fig. 2. 
We consider the fluid medium to be inviscid-incompressible 
and calculate the surface loading from the solution of the 
following potential problem: 

v2L$ = 0 (3.1) 

13 



h 

-F 

Figure 2 - Vibrating Elliptic Cross Section 

aQ f .;r -= 
an S 

= w,(t)j*g on C (3.2) 

4 continuous on C (Neumann Condition) (3.3) 

with the perturbation pressure given by 

w p’ = -Pm= (3.4) 

The purpose of this section is to investigate the consequences 
of the Neumann Condition (3.3) as the elliptic cross section 
tends to a flat plate. 

To solve the boundary value problem we consider the 
complex potential 

and let 

Q(z) = ++i$ , z=x+iy (3.5) 

z = w + b2/w , w = pe ie (3.6) 

map the body into a circle 

w = aeie (3.7) 
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in the w-plane. The surface of the body is given by 

. 

2 z = ae le + bF e -ie = (a + g)c0se + i (a - g) sine 

(3.8) 

so that 

a + b2/a = c/2 

a- b2/a = h/2 

or 

a=c* 1+-c 
4 

b=adE 

(3.9) 

(3.10) 

with 

T = h/c (3.11) 

In the w-plane, it is easily shown that the problem 
for @ is 

V2Q = 0 

= 1 : ~ w,(t)sin 8 
p=a 

Q continuous on C 

(3.12) 

(3.13) 

(3.14) 
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and the solution is 

@.= - 
2 i a2 G,(t) 

(l+r)w 

With Eq. (3.4) the pressure on the surface is 

p' = 
2 pooa 

-pg- 
Go(t)s 

But from Eq. (3.8) 

X= c c0se 2 

(3.15) 

(3.16) 

(3.17) 

and 

sin 8 = (3.18) 

Thus on the upper surface 

or using Eq. (3.10) 

The main points to be made about the solution are: 

1) It is unique. 
2) It is continuous on C. 
3) Even for the flat plate the pressure tends to 

zero elliptically at the edges. 

(3.19) 
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All of the above results are due entirely to the requirement 
of the Neumann condition; i.e., that the potential (or 
pressure in the present case) be continuous on the boundary. 

In the next section we consider an alternative approach 
to the flat plate problem in which the Neumann condition is 
relaxed. We should point out here that the Neumann condition 
is strictly a mathematical requirement much analogous to the 
Kutta condition that insures uniqueness of the boundary 
value problem. The physical basis or in fact the invalidation 
of this condition will be considered in Section III-C. 

B. Vibrating Flat Plate - Inviscid 
Incompressible Fluid Medium 

Consider the flat plate illustrated in Fig. 3. We suppose 
that the plate can vibrate in vertical translation with velocity 
wow or pitch about mid chord with angular velocity y(t). 

Far Field 
Point 

2 X 
-c/2 i c12 

Figure 3 - Vibrating Flat Plate 
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The boundary value problem is 

v21$ = 0 

y=o+ 
= w,(t) + WI(t) F 

grad 4 -0 ataJ 

(3.20) 

(3.21) 

(3.22) 

No requirement of continuity of @ on C 

The solution of Eq. (3.20) that satisfies Eq. (3.22) can be 
expressed as a superposition of dipoles on C ; i.e., 

where 

A$ = $(x,0-) - @(x,0+) 

R = [(x-<)~ + y211/2 

(3.23) 

(3.24) 

Now apply the boundary condition Eq. (3.21) to obtain the 
integral equation 

1 

a 1 -_ 
ax Tr f 

& dY = - c(w, + wl=X) 

-1 

(3.25) 
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where the "slash" indicates a Cauchy principal value integral 
and X = 2x/c is a normalized coordinate. Integrate Eq. (3.25) 
with respect to X to obtain 

1 
1 
F 

f 
&dY=-5 wou,w + cl*TJo (3.26) 

-1 

where V,(X) is the Chebyshev polynomial of the second kind 
and C,(t) is an arbitrary constant. The general solution of 
Eq. (3.26) is well known (e.g., see Ref. 1, p. 28); i.e., 

A@ = __~~ - c/2(woT2W + y/4 T3(X)) 
(3.27) 

Co + CITl(X) 

where Co(t) is a second arbitrary constant that arises 
from the eigensolution of Eq. (3.26). 

The pressure on the upper surface of C is given by 

a++ pa aAtJ 
p'=-p4F= - T at 

co + tlTl(X) - c/2(GoT2(X) + $/4 T3(X)) 
I 

(3.28) 

For arbitrary values of the coefficients Co,Cl the pressure 
has a square root singularity at both edges of the plate. 
Also we note that the total force and moment on the plate are 
proportional to Co and e, respectively. That is, for the 
vertical force 
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c/2 1 

F= 
J 

Ap'dx = - c 
s 

p' dX 

-c/2 -1 

PC0 . dX = - c 
T co 

-1 J l-X2 

PC0 

= a 

T 

l Trc l C,(t) 

and for the moment about x=0, 

42 1 

s 

2 
M= xAp' dx = - % 

s 
xp' dx 

-c/2 -1 

(3.29) 

(3.30) 

The existence of an eigensolution of the flat plate 
problem is a direct conseqence of the relaxation of the 
Neumann boundary condition; i.e., continuity of @ on the 
plate. To illustrate this point we apply the Neumann condition 
to Eq. (3.28). Por continuity of p' at x = ?r 1, we must have 
the numerator of Eq. (3.28) vanish at both edges; i.e., 

to + $Tl(+l) - 5 woT2(cl) + 

= (to - 5 Go) + (El - $ l 2) = 0 
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or 

For pure translation we have % =0 andso 

(3.31) 

(3.32) 

which result is the same as Eq. (3.19). In the previous 
section we built the Neumann condition into the solution by 
choosing the circle plane solution as the standard. There 
is no a priori reason to choose the Neumann solution. In 
fact we will show in the next section that the solution of 
the viscous problem always has singularities at the edges. 
For mathematically sharp edges, the singularities weaken 
asymptotically as the viscosity tends to zero. 

Before we attack the viscous problem, we show one 
point about the compact acoustic problem that uses the 
last result. The acoustic pressure is given by 

-UP, 

Pa = -J-- A@ay *o a Er(')(kR)dS 

-c/2 

where 

R = [(x-<)~ + y2] 
112 

(3.33) 

(3.34) 

k = w/a0 (3.35) 

and H(2)(z) is the Hankel function (see Ref. 4, Chapter 9). 
In the'far field we get 
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-i(kr-r/4) 
l s 

where 

c/2 

S= 
s 

A@ e 
ikycosedy 

-c/2 

1 1 
2 

=- 
2" A$ dX + ik(s) case A$*X dX 

or 

s = g l do + (5) 

2 
ik + Clcosf3 

(3.36) 

(3.37) 

and 

-i(kr-r/4) 
sin 8 (iwCo) + i + (ikXl)cOse 1 

(3.38) 

for a compact plate. Thus the acoustic far field is completely 
determined by the magnitude of the eigensolution and there- 
fore ultimately by the "uniqueness criterion" that we impose 
to solve the surface load problem. The Neumann condition 
is one alternative but in fact is only a mathematical condition 
that has no physical basis. The load distribution measured 
by Brooks (Ref. 3) is a prime example of the invalidation of 
the Neumann condition. Any viable alternative to the Neumann 
condition must account for viscosity in some rational way. 
That is the subject of the following section. 

22 



C. Vibrating Flat Plate - Viscous Compressible 
Fluid Medium 

To further explore the importance of the eigensolution 
of the inviscid problem we turn now to the more general problem 
of a two-dimensional flat plate that vibrates in a viscous 
compressible fluid medium. 
stated as follows. 

The boundary value problem is 

G$$+ div$' = 0 
a 

0 

(3.39) 

%$+ gradh' = - v grada' xc (3.40) 

5.21 = w(x) e iwt 

I 

on y = O+ 
+ -fl 1'V = 0 

(3.41) 

Outgoing or damped waves at 03 (3.42) 

All dependent variables are proportional to e iwt so that 

v2h' + k2h' = 0 

where 

v2P - J$y = 0 

k = w/a0 

(3.43) 

(3.44) 

(3.45) 

ill i7r/4 
a= br is e (3.46) 
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and R' is the perturbation vorticity. It is easily shown 
that the solutions of (3.43) and (3.44) that satisfy the 
field equations, the no-slip boundary condition and the far 
field boundary condition are of the following forms: 

c/2 h’ = - $ s Ah’ 2 H(2) (kR) dc 
aY 0 

(3.47) 

-c/2 

c/2 R’ = - & s Ah’ & KoWW5 (3.48) 

-c/2 

Now apply the boundary condition on the normal velocity 
component at the surface to obtain the following integral 
equation: 

. 
+ykHo 2 (2)(k[x-Cj) d< 

= - 2iw W(x) (3.49) 

We demonstrate next that Eq. (3.49) has a unique solution that 
is singular at both edges. 

Consider the plate to be acoustically compact and of 
sufficiently small chord that 

9- a c << 1 (3.50) 
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Then the kernel of Eq. (3.49) can be reduced asymptotically to 
obtain the following integral equation in terms of normalized 
coordinates? 

1 
1 
-rr s ( 

Ah' RnlX-YI -F Rn y+y+; + W(X) (3.51) 

where y is Euler's constant (" 0.57721) and 

kY> = 5 (X,Y> (3.52) 

Differentiate Eq. (3.51) with respect to X to obtain the 
familiar airfoil equation 

1 
1 
i7 

jF 
s dY = $ W'(X) (3.53) 

-1 

whose general solution is 

1 
r- 1 

Ah' = JAS - y&i -1 1-y2x!!y(y)dy f 
(3.54) 

where A0 is an arbitrary constant. Now multiply Eq. (3.51) by 
l/ 1-x $1 and integrate over the plate. The result is 
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1 
1 
-rr 

s 
Ah'dY = 

-1 -1 

(3.55) 

which serves as a natural integral constraint to evaluate 
A0 ; i.e., 

1 
1 
T 

s 
Ah'dY = A0 

-1 

The solution of the viscous compressible 
is 

Ah’ = 8v/nc 

J l-X2 

1 

f r W dY 

i 

Jh7 
-1 

Rn y +,+; 

1 

-f 
-1 

(3.56) 

flat plate problem 

(3.57) 

Remarks': 

1) The solution of the viscous compressible vibrating flat 
plate problem is unique. 

2) The load distribution is of the same form as the eigen- 
solution of the inviscid problem. Furthermore the load 
has square root singularities at both edges. 

3) The vorticity is singular at the plate edges. 

While the foregoing remarks are rigorously proved in the 
asymptotic regime kc/2 << 1 and (ajc/2 << 1 the results remain 
true in the general case. The reason is that the kernel in 
Eq. (3.49) h as a logarithmic singularity when viscosity 
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is included. The general theory of such equations (Ref. 5, 
for example) proves the uniqueness of solution and the 
existence of edge singularities. 

In Fig. 4 we illustrate the numerical solution of 
Eq. (3.49) for k = 0 and la/c/2 = 4. Even for this 
relatively large value of the viscous parameter the load 
distributions for a plate vibrating in translation or pitch 
have singularities at the edges-. The results in Fig. 5 are 
for a plate vibrating in pitch with 1a]c/2 = 10. The 
singularity in the real part of the load is starting to weaken 
while the imaginary part still remains singular. Finally in 
Fig. 6 we show the results for translation when [ale/2 = 100. 
The real part of the load has the diz dependence that is 
obtained with potential theory and the Neumann condition (see 
Section III-A). The imaginary part of the load tends to zero 
as the viscosity becomes smaller but appears to have a singu- 
larity at the edges. 

The main conclusion of the viscous theory is that the 
physical effect of viscosity is absolutely essential to 
formulate the surface loads problem correctly; i.e., so that 
a unique solution can be obtained without a mathematical 
artiface. The second conclusion is that for the case of 
mathematically sharp edges, viscous effects will not eliminate 
the edge singularities. The effect of edge geometry and/or 
non-linear fluid effects must be taken into account to obtain 
a singularity free solution. Another implication of the 
viscous theory is that the Neumann condition is not the correct 
physical uniqueness criterion to apply to the potential theory 
of thin vibrating surfaces. A strong piece of experimental 
evidence that also supports this conclusion was obtained by 
Brooks (Ref. 3). The measured surface load distribution for 
an airfoil vibrating in pitch about the 40% chord location 
is illustrated in Fig. 7. Note the relatively flat nature 
of the loading near the edges. In fact, the load appears to 
increase slightly near the leading edge. The experimental 
results indicate the existence of a strong vorticity field 
near the edges and negates the validity of the Neumann 
condition. Recall Ref. 2 that we used this evidence to explain 
the discrepancy between the measured and calculated (with the 
Kirchhoff integral) far field noise. 

We conclude this section with a simple result based on 
the potential theory of Section III-B. Consider the normalized 
load distribution for a plate vibrating in pure translation 
(Eq. (3.28)) and expressed in dB ; i.e., 
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Figure 4 - Complex Surface Load on a Flat Plate Vibrating 
in Translation and Pitch - Viscous Theory 
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Figure 5 - Complex Surface Load on a Flat Plate Vibrating 
in Pitch - Viscous Theory 
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Figure 6 - Complex Surface Load on a Flat Plate Vibratirig 
in Translation - Viscous Theory 
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Figure 7 - Surface Load on a Vibrating NACA 0012 Airfoil 
(Measured by Brooks, Ref. 3) 
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( l+A) 
LdB = 20 loglo 

- T2(X) [ 1 (3.58) 

p, l-X2 r 

where p r is an arbitrary reference pressure. When A= 0, 
the Neumann load distribution is obtained. We compare the 
Neumann result with the case A = 0.4 in Fig. 8. The 40% 
increase in the magnitude of the Neumann eigensolution yields a 
load distribution that is very flat near the edges. By con- 
struction it does indeed have square root edge singularities. 
The important point is that by giving up the Neumann condition 
as a uniqueness criterion we can fit experimental surface loads 
data much more accurately. We should point out that this point 
is also true in regard to the Kutta condition when applied to 
the potential theory of lift. By giving up the Kutta condition 
Pinkerton (reported in Ref. 6) found that much better agreement 
could be obtained between measured and theoretical surface 
loads data. More recently. it has been shown (Ref. 7) that 
by including viscosity and-section geometry (real and-effective) 
in thin airfoil theory that both steady and unsteady 

A = 0.4 , 

- .6 

Figure 8 - Comparison of Edge Loading with and Without 
the Neumann Condition (See Eq. (3.58)) 

32 



results can be calculated uniquely and accurately. It is the 
fundamental contention of the present study that viscous and 
geometric effects must be included simultaneously in a 
complete theory of the surface load required for acoustic 
calculations. 

D. Vibrating Two-Dimensional Body - Viscous 
Compressible Fluid Medium 

We conclude our present study with a precise formulation 
of the viscous compressible surface load problem for an 
arbitrary two-dimensional section. The boundary value problem 
is very similar to one posed in Section III-C, Eqs. (3.39) 
through (3.40). Referring to Fig. 9 we have 

-$$+div$' = 0 
aO 

(3.59) 

+ 
$+gradh' = - v grad R'x 2 

iwt 
;r.;t = W(s)e on C 

0 

(3.60) 

(3.61) 

Figure 9 - Vibrating Two-Dimensional Body in a Viscous 
Compressible Fluid Medium 
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&ff 
iwt 

= U(s)e on C 
0 

(3.62) 

Outgoing or damped waves at infinity (3.63) 

Equations (3.43) through (3.46) are still valid. We introduce 
two Greens functions GH and GL? as follows: 

V2GH + k2GH = 27rs (L"y) (3.64) 

V2G, - a2Gn = 2lT6 (iL"y> (3.65) 

The solutions are required to satisfy the boundary condition 
Eq. (3.63). Now use the following identities: 

GHV2h' - h'V2GH = V(GHVh' - h'VGH) 

= - 2nh'S(&;;) 

and 

GQV2!? - n'V2Gn = V(G$fi' - R'VG~) 

(3.66) 

= - 27TR ’ 6 <x’-$> (3.67) 

Integrate the above identities over the domain exterior to the 
body to obtain the following representation of the solution: 
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ah’ 
GHw- h' 

aGH 
%i-'- 

1 .Q'(ii) = 27F 
f ( 

t 
ds' G, $ - Q' 

(3.68) 

(3.69) 

Next we project the momentum equation onto the surface Co 
to obtain the following pair of equations: 

as-21 iwU(s) + <hi = v an on Co 

ah’ afi’ iwW(s) + an = - v - as On c~ 

(3.70) 

(3.71) 

These equations can be used to eliminate the normal derivatives 
of h' and R' in Eqs. (3.68) and (3.69). After integrating 
by parts in each term that involves a tangential derivative, we 
obtain 

h'(g) = & aGH aGH vR' w - h' anl - iwGHW(s') 
3 

(3.72) 

vi-P(Z) = - & $ ds' [h' 2 + vR' 2 + ioGQU(s')] 

(3.73) 

The final step is to take the limit as - any point 
on the body contour Co . Note the following results: 
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S+E G 
1 Lim z 

s 
ds' aG 1 

x'+Z 
anl=- ZF 

s 
--Y_dt=-; 

y-+-O -G 
t2+y2 

P S-E (3.74) 

where G can be GH or Gn since both functions behave 
like &?nlGl 
shown that 

near the origin. With Eq. (3.74) it is easily 

h'(s) = ; 
aG 

vR' & - h' aGH iw 
) P an'--+- ds'GHW(s') 

(3.75) 

and 

VP(S) = - ; 
aG aGsJ h' $ + VR' w) +iw 

Tr $ ds'G#(s') 

(3.76) 

This is a coupled pair of inhomogeneous singular integral 
equations for the unknown pressure and vorticity. The combined 
effects of viscosity and geometric cross section are 
rigorously included in the formulation. It is clear from our 
previous discussion in Section III-C that the solution of 
this pair is unique. If the contour is smooth, no singularities 
will appear in the solution. It is firmly believed that the 
solution of this pair of equations has the strongest possi- 
bility.of yielding results in agreement with the load 
distributions measured by Brooks (Ref. 3). The only physical 
effect that we have omitted is the possibility of nonlinear 
flow near the edges. Since there is nothing in the experi- 
mental results of Brooks that suggests the slightest bit of non- 
linearity, we feel that such effects can be safely omitted. It is 
recommended that the numerical solution of the pair of 
integral equations derived herein be the subject of a future 
research effort. 

IV. CONCLUSIONS 

The main conclusions of this study are summarized below: 
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1. For Helmholtz numbers of order unity or less the energy 
dissipated by viscosity at the edges of a vibrating 
three-dimensional plate can be comparable to or greater 
than the acoustic energy radiated to the far field. 

2. The Neumann boundary condition is not the correct 
uniqueness criterion to apply to the potential theory 
of the surface load distribution on a thin vibrating 
plate. The viscous theory and the experimental results 
of Brooks (Ref. 3) support this conclusion. 

3. The correct formulation (to obtain a unique solution) 
of the surface loads problem must include the physical 
effect of viscosity and the effect of geometric shape. 

4. The far field acoustic solution is determined uniquely 
by solution of the viscous surface loads problem. 
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APPENDIX A 

VISCOUS CORRELATION 

Consider the integral 

where 

FUNCTION 

T(-)x) = e 
-xlsq 

13 ' 
3 = &J 

V 

(A.1) 

(A. 2) 

We introduce the three-dimensional Fourier Transform pair; 
i.e., 

.+ + e-la*X T(-)x)& 

T(z) = ' 
s 

.+ + 

3 e 
=cx'x ?(;)d; (A. 3) 

Then J can be reduced to the following Parseval relation 

where 

(A.4) 

3 r=y’-5’ (A. 5) 
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Now 

I 
.+ -t T(G) = e-=(- . e -xpq 

Iii\ dz 

IT 

= 2Tr 
s 

0 

co 

4Tr =7 
01 

s 

0 

a e-iarcos@sin$d$ s r e-)" dr 

0 

.-Xr sincxr dr 

= 4Tr = 
ct 2 + A2 a ' + iw/v 

Thus 

J=+ 

s 

co 

2 =- 71 I 
0 

8 a sin m da =r s a 4 + w2/v2 
0 

a 4 + w2/v2 

2 a da 
Tr 

cl 4 + tJJ2/v2 
l 2Tr I 

e-iarcosQ sin@d$ 

0 

(A. 6) 

-Tkr J 
=me sin J-- Er (A. 7) 
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APPENDIX B 

ACOUSTIC RADIATION FROM A VIBRATING SURFACE 

Consider the equations 

%g+ div$' = 0 
a0 

s+gradh' = 0 

0.1) 

(B. 2) 

or 

with 

V'h' 

ah'=-- 
av; 

a2 at On z=o+ 

(B.3) 

(B.4) 
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Let 

and 

Then 

and 

a(;) = p,(h'(%,O-) - h'(;,O+)) 

h' -f h'e iwt 

k = w/a 
0 

v'h' + k'h' = 0 

h'=& 
s 

Q<y’> e 
-iklz-$1 

IX 
4 

S 

Also 

Lim h' 
Z-tOf 

= Q(g) =s (- 5 d;) 

R3 = (2' + p2)3'2 

d$ = pdpde 

Lim h' = - ZIT Q(;';) 
s 

PZ dp 
z-to+ (z2+pZ) 3'2 

0 

I 
E 

= 2~r Q(g) 
o 

= i Z-rr Q<t) sgn z 

(B-5) 

(B. 6) 

(B-7) 

0.8) 

(B.9) 

(B.lO) 

(B.ll) 
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II 

and 

h I' _ h'+ = 4~ Q(x’) = 9 
ml 

or 

Finally 

where 

Or 

Q(“x) = ;$ 
co 

-f 
&X 

13 

r = Iii1 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

h’=- ik Z -ikr 
s 

H$>e ik;;*$ d$ (B.18) 

S 
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Also in the far field on a sphere of radius r 

and 

and so 

ah' - = - iuv' 
ar n 

vi = i ah' -- 
w ar 

ah' 
ar- - ikh' 

v’ ; n 
;hh!& 

0 

h7 
2 

h'v'n = a = (Re h' eiwt) 
0 aO 

2 
(& h' eiwt) = (hicoswt - h;simt)' 

= hi2 cos'wt+h' 
j 

2iz7z 

=; Ih'j' 

h'v; = 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 
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,&iy,)d;l eikG=($-;l) 

S (B.26) 

sine = f 

Y 

Referring to the above sketch 

A 
x = Z cosecos$~ -I- j cos0sin$ + k sine 

= cos8(Gs) + C sin0 

(B.27) 

(B.28) 

Thus 

A 

xS = 1 cos$ i- 7 sin@ 

2 Si;'e s ac$)d-$ S,"(;.)d~,ei(kCOSe)js'(;-~') 

S S 
(B.29) 
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Now 

E, = de r'cose@ 
0 

2l-r n/2 

G= 
s s 

d+ de sin2ecoseei(kcos~);;s'(~-?) (B.31) 

0 -IT/z 

For compact surfaces 

7F/2 

G = 2~ 
s 

sin28cos8 

-IT/z 

= 413 Tr 

and 

Ea = k2 
32712p$ao 

l 4 l Tr l ILIZ 3 

k2 = 
247rpza, 

l ILIZ 

= k2 l IJ!Lo&4I2 
24*p:a, S 

(B.32) 

(B.33) 
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